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The most important, fundamental concept of calculus is limit. The base of
limit is the con-tinuity of the real number set R, which would be skipped here.
Coming from limit, we can get differential, integral, series and so on. If we must
compare which part of calculus is most im-portant, limit. Then comes differ-
ential, Riemann integral may be the least important, while Lebesgue measure
theory is much better.

For I may have no other words to write during the military training, I am go-
ing to write something about calculus. Today should be the first day.

The basic description of limit is for sequence, and then expand to functions.
If we take a board view, we can regard differential, Riemann integral as two dif-
ferent special limits. Thus limit is very important, and the brilliant methods of
describing a limit is also significant.

There are two statements to describe a sequence limit:

ϵ−N definition

lim
n→∞

xn = xl ⇔
∀ϵ ∈ R+,∃Nϵ ∈ N, |xn − xl| < ϵ

Cauchy's Convergence Test

∃ lim
n→∞

xn ∈ R ⇐

∀ϵ ∈ R+,∀n,m > Nϵ ∈ N, |xn − xl| < ϵ

These two statements offer a profound observation in how continuous R is and
how could that continuity lead to limit.

ϵ −N definition tells us that for any positive number ϵ, the distance between
the sequence xn and some number xl ∈ R can be smaller than it, which means
they can get close to each other to any extent. We can use such phenomenon or be-
havior to describe a limit. Such properties obviously depend on the continuity of
real number set (proved by Dedekind's Theorem). If not give the continuity (sup-
posing you have known how it is defined), we will have no confidence to say that
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there can always exist a number between ϵ and 0. Even if we get the continuity
of Q and R−Q, we cannot assure it.

Cauchy's Convergence Test, however, describes such phenomenon or behavior
in another way, not needing the fixed number xl. It requires the difference in
itself be convergent to zero as n → ∞. Cauchy's Convergence Test reveals the
properties of R better than ϵ−N definition, and can be proved through the con-
cept of Infimum and supremum (continuity), and Bolzano-Weierstrass Theorem.

Situations are similar in functions, but there are three statements and the
equality among them can be proved based on continuity and the properties of
continuous functions on a closed interval.

ϵ− δ definition

lim
x→x0

f(x) = L ⇔

∀ϵ ∈ R+,∃δϵ ∈ R+,∀x ∈ Ḃδϵ(x0) = {x|0 < |x− x0| < δϵ}, |f(x)− L| < ϵ

Heine's Theorem

∃ lim
x→x0

f(x) = L ⇔

∀{xn} : lim
n→∞

xn = x0, xn ̸= x0,∃ lim
n→∞

f(xn) = L

Cauchy's Convergence Test

∃ lim
x→x0

f(x) ∈ R ⇐

∀ϵ ∈ R+,∃δϵ ∈ R+,∀x1, x2 ∈ Ḃδϵ(x0), |f(x1)− f(x2)| < ϵ

The statements for function limit are very similar to the sequence ones. So
the inner theory about continuity does not require repeat. And in the function
situation, we have a more adapta-ble calculating method: Taylor's Theorem and
L'Hopital's Rule (actually it should be called Bernoulli's Rule). So Cauchy's Con-
vergence Test is not providing a definite limit number (which also means a more
extensive adaptability) and ϵ − δ definition's being difficult to calculate does not
matter.

All the situation are similar when it is expanded to a multi-dimension Eu-
clidean Space. The only thing need to be paid attention is about the definition of
distance of two vectors (expressed in bold font)

φ(x1,x2) : Rn → R, θ(x1,x2) : Rm → R
ϵ− δ definition

lim
x→x0

f(x) = L ∈ Rm,x,x0 ∈ Rn ⇔

∀ϵ ∈ R+, ∃δϵ ∈ R+,∀x ∈ Ḃδϵ(x0) = {x|φ(x,x0) < δϵ}, θ(f(x)− L) < ϵ
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Cauchy's Convergence Test

∃ lim
x→x0

f(x) ∈ Rm,x ∈ Rn ⇐

∀ϵ ∈ R+, ∃δϵ ∈ R+,∀φ(x1,x2) < δϵ, θ(f(x1), f(x2)) < ϵ

Distance mapping φ(·, ·) and θ(·, ·) can be any kind of mapping from high-
dimensional space to real number field as long as they meet the basic require-
ments for distance.
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