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Multi-variable differential and single-variable situation have great similar-
ity. Such simi-larity mainly relies on the similarity of limit process, while the
similarity of limit process mainly relies on the simple inequality below, which is
actually the reflection of the structure of Euclidean Space:

∀i = 1, 2, · · · ,m; p = 2 |ai| ≤

(
m∑
j=1

|aj|p
) 1

p

(1)

This very basic relationship is the great bridge between multi-variable limit
and single-variable limit. So we can make a deeper analysis about what I said
on 2015-07-11:

∀i = 1, 2, · · · ,m; p = 2

φ(x̃i, x̂i)R = |x̃i − x̂i| ≤

(
m∑
j=1

|x̃i − x̂i|p
) 1

p

= φ(x̃, x̂i)Rm < ϵ (2)

From (2), we can easily understand if we give a constraint φ(·, ·)Rm ∈ R for
Rm space, according to the inequality (1), we can have the same constraint on
the component φ(·, ·)Rm. Such property guarantees the components on every axis
(projection) can reach a common infinitesimal constraint ϵ. So limits on every
component can be got.

And if we turn back the order,

∀i = 1, 2, · · · ,m; p = 2

φ(x̃i, x̂i)R = |x̃i − x̂i| < ϵ ⇒ φ(x̃, x̂)Rm =

(
m∑
j=1

|x̃i − x̂i|p
) 1

p

< p
√
m · ϵ

The normal distance can also be controlled. Such relationships mainly rely on
the property of absolute value, or the property of being non-negative, and such
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is the property of Normal Linear Space1.

So, it is lucky that we expand the conclusions of single-variable differential in
Euclidean Space (a kind of Metric Space), so we enjoy such consistence.

However, even the two situations share great similarity, there is tiny but sig-
nificant difference between them. One of them is the relationship between dif-
ferential and derivative: in single-variable situation, the existence of differential
and derivative is equal. But in multi-variable, we cannot get the former from the
latter.

To simplify our discussion, we constrain the normal mapping f : Rm → Rn

to a function f : Rm → R. Then, for any variable xk, we can fix other variables
{xj}j=1,2,...,m;j ̸=k and have its partial derivative:

∂f

∂xk

(x) = lim
∆xk→0

f(x1, . . . , xk +∆xk, . . . , xm)− f(x1, . . . , xk, . . . , xm)

∆xk

If we take the fixed variables as constants, then the changes are constrained
to one axis, this partial derivative is a normal derivative for function g(xk) =
f(x1, . . . , xk, . . . , xm). Such is the ordinary situation of single-variable differen-
tial. If we assure the existence of partial derivative of every variable, written in
the increment relationship below,

∀i = 1, 2, · · · ,m

f(x̃+∆xk)− f(x̃) =
∂f

∂xk

(x̃)∆xk + o(∆xk)

Can we have the existence of the Exact Differential? The answer is No.

If we separate the exact difference into many increment and adapt partial
derivative

f

x̃+

∆x1
...

∆xm


− f(x̃) =

m∑
j=1

f

x̃+

 ∗
∆xj

...


− f

x̃+

 ∗
∆xj+1

...





=
m∑
j=1

∂f

∂xj

x̃+

 ∗
∆xj+1

...


∆xj +

m∑
j=1

o(∆xj)

make

 ∗
∆xj+1

...


j=m

= 0

1When this article is written, I consulted the book of Functional Analysis, and found this is a
very basic conclusion in Metric Space.
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For the partial derivative part, we see unless the partial derivative part is
continuous, we wont have the existence of exact differential. On the other hand,
the infinitesimal reminder can be controlled through what we have talked about
the similarity between the two situations. Of course the standard method is to
use Lagrange Mean Value Theorem and so need not to analysis the infinites-
imal reminder.

This conclusion reveals what is hidden in single-variable situation. If all the
stories happen on only one axis, we cannot see the truth. When it comes to a
high-dimension situation, we find that it seems that partial derivative cannot
converge on one point.
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