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Today I try to get something when Jacobian Matrix is square and the map-
ping is a trans-formation R™ — R™,

If the transformation f(-) is good, the matrix equation Df (X)-dx = df (x) should
have solution. In this transformation, we can use rank for solution analysis,
but we can also use Cramer's Rule and then measure determinant of Jacobian

Matrix.
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According to Cramer's Rule, there will always be only one solution. And Jaco-
bian Matrix has its inverse matrix D~'f(x). So we can have dx = D'f(x) - df(x).
This equation tells us the existence of inverse mapping and its differential rela-
tionship, helps us transfer from image space to variable space.

Also, Jacobian Matrix is full rank, so m column vectors or tangent vectors are
independent, which is very natural for different tangent vector takes different
direction, and they can be basis of image space for this is a square matrix.

However, if Jacobian Determinant is zero, there would be no solution or count-
less solu-tions. In all these zero situations, there is a special one when all ele-
ments of Jacobian Matrix and image vector are zero. Then the solution space is
null space and may be critical points for f.x.



Actually, I read about Prof. Xie's lecture note about diffeomorphism today.
There are some conclusions I achieved these days. I regret that I didn't read
about these materials before writ-ing the article. If I read more, I won't spend
much time on exploring the present knowledge. It can be said that articles these
days show my ignorance.

So now we can talk a little about C? diffeomorphism. There won't be strict def-
inition here, and we are only required to know: (1) spaces, or sets on both sides
are open; (2) the mapping is double bijection; (3) the mapping and its inverse are
differentiable to p-order, and most important, R™ > D, 3 x — f(x) € R™.

So for a C? diffeomorphism, its mapping is a transformation and Jacobian
Matrix is square. Notice that the mapping is differentiable to p-order, so Jaco-
bian Matrix is definitely non-singular. All the tangent vectors can be a group of
basis in R™. However, such basis have a characteristic which is they are vari-
able according to the differential point. This is covariance of vectors, which
describes how things change when the basis change, for example, change from
basis|[7(Z;)]i=12,.m to another basis [7(Z;)]i=12..m- And Jacobian Matrix is a co-
variant matrix. Only in this situation, we can regard the matrix as a change of
basis. The existence of these conclusions is based on the similarity between the
differential manifold.

Since Jacobian Matrix is non-singular, we can discuss about its inverse ma-
trix. From the definition of Jacobian Matrix, it is easy to know:

D' (x) = Dx(f) = [ij(f)]]T:LQ ..... n

Its tangent vectors can also be a group of basis called contravariant basis.
And according to the definition of inverse matrix, we know that the multiplication
of one non-singular matrix and its inverse matrix is an identity matrix, so we
have:

[vxj(f)]jT:LQ ..... n o T(@)]iz12,m =T € R™*™

If we write about the elements, we will have a dual relationship:

1 i=j

0 it (1)

< Vx](f),T(jz) >Rpm=— 5i,j = {

< -,- >pm is the notation of inner product of two vectors in R™ space.

Another important part of linear transformation is eigenvalue. I have no
deep understand-ing of eigenvalue, so sadly I cannot write anything. But I googled
this topic and saw there is a good use of eigenvalues of Jacobian Matrix to anal-
ysis critical points and their stabilities of linear or almost linear system. So it
shows the importance of Jacobian Matrix Eigenvalues. But I won't write about
it, since it is well studied and may be not related to the linear space.



